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Fig. 1. Manufactured parts are usually optimized for many distinct contexts: here, turbine designs are optimized for mass and power (performance) under
various wind speeds (context). Each context yields a distinct Pareto set, or collection of designs with optimal performance trade-offs. Existing tools require a
separate optimization for each context of interest. As an alternative, we augment the standard multi-objective optimization framework to simultaneously
consider design and context variables. This allows us to find the Pareto gamut (left, colored by context), which captures the Pareto-optimal designs over a
range of contexts. From this gamut, we can extract any fixed-context Pareto set (right, top) and its image in performance space (right, bottom).

Manufactured parts are meticulously engineered to perform well with re-

spect to several conflicting metrics, like weight, stress, and cost. The best

achievable trade-offs reside on the Pareto front, which can be discovered via

performance-driven optimization. The objectives that define this Pareto front

often incorporate assumptions about the context in which a part will be used,

including loading conditions, environmental influences, material properties,

or regions that must be preserved to interface with a surrounding assem-

bly. Existing multi-objective optimization tools are only equipped to study

one context at a time, so engineers must run independent optimizations

for each context of interest. However, engineered parts frequently appear

in many contexts: wind turbines must perform well in many wind speeds,

and a bracket might be optimized several times with its bolt-holes fixed in

different locations on each run. In this paper, we formulate a framework

for variable-context multi-objective optimization. We introduce the Pareto
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gamut, which captures Pareto fronts over a range of contexts. We develop a

global/local optimization algorithm to discover the Pareto gamut directly,

rather than discovering a single fixed-context “slice” at a time. To validate

our method, we adapt existing multi-objective optimization benchmarks

to contextual scenarios. We also demonstrate the practical utility of Pareto

gamut exploration for several engineering design problems.
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1 INTRODUCTION
Performance-driven optimization is a cornerstone for effective engi-

neering design, because it permits the fine-tuning of parts based on

their predicted performance in the real world. The desired perfor-

mance metrics for a given part are often multiple and conflicting:
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bicycle components should be lightweight and strong, and wind tur-

bines should be compact with high power output. To achieve good

trade-offs between such objectives, engineers typically seek Pareto-
optimal design solutions, or designs for which it is impossible to

improve performance on all metrics at the same time; improving any

metric will worsen at least one other. Such Pareto-optimal designs

are typically identified via multi-objective optimization schemes.

To use a multi-objective optimization scheme, engineers must

parametrize the given part with a set of design variables. These
specify aspects of the design that are allowed to vary during op-

timization, e.g. the blade radius and pitch of a wind turbine (Fig.

1). To measure the quality of each design, engineers define a set

of relevant performance metrics, e.g. the turbine’s mass and power

output. Performance evaluations (and thus, the optimal designs) are

also influenced by external constraints or assumptions derived from

the part’s intended context. For instance, a turbine’s power output
depends on environmental factors like wind speed and air density.

As shown in Fig. 1, the Pareto-optimal designs for low wind speeds

have short blades, and are limited to modest power outputs.
1
Fast

winds yield longer-bladed designs with objectively better trade-offs

(better power for a given mass) compared to slow contexts.

Context parameters typically appear as constants embedded in

the performance metrics a priori: they are not allowed to vary dur-

ing optimization because engineers cannot control the context. For
example, if windspeed were allowed to vary, the Pareto front would

exclusively contain turbines designed for and evaluated under the

fastest wind speed. Nevertheless, these designs are useless for sites

with slow wind; the Pareto set is only relevant if it has been opti-

mized subject to the appropriate fixed context.

However, fixed-context optimization is insufficient in practice

because the solutions are predicated on unrealistically precise as-

sumptions. The context represents conditions that are complex,

dynamic, and hard-to-measure; thus, a single context rarely cap-

tures a problem’s true nature. For robust design, one must consider

Pareto-optimal designs over several contexts. This is tedious with

existing optimization tools, which only provide insight into one

context at a time. Industrial design programs like SolidWorks and

Altair Inspire include tools to manage ad hoc context exploration,

but the process remains inefficient. According to a SolidWorks di-

rector of product management, “you never hit run once [for any

optimization]. You look at the results and run it again with different

assumptions and inputs to evaluate those inputs. Then you run it

again. It’s an iterative process” [Wasserman 2017].

We address this challenge by developing a novel framework for

variable-context optimization, which identifies the Pareto fronts

for many context values simultaneously (§1.2). To motivate our

approach, we present three broad problem classes that would benefit

from variable-context optimization, as shown in Fig. 2.

1.1 Variable-Context Optimization: Motivation
As shown in Fig. 2a, our first class considers parts that must with-

stand a range of contexts due to uncertainty (e.g. fabrication pre-

cision) or dynamic environments (e.g. wind). By studying Pareto

fronts for many fixed-contexts in the range, engineers can identify

1
All metrics are formulated for minimization, so small values are preferable.

(c) Higher-Level Contextual Tuning(b) Library for Building Blocks
Final part encounters one context.
Several contexts are common, so
optimize all for quick adaptation.

(a) Design for Dynamic Contexts
Final part encounters many contexts.
Selected design must perform well in
full range of contexts.

Final part encounters one context;
Explore several contexts for a part to tune
overall performance of larger system.

Wind

Fig. 2. Multi-context design examples; each column shows a class of prob-
lems (context in italic). (a) Some parts encounter many contexts: turbines
(top) must perform under many wind speeds and temperatures; mounting
brackets (bottom) must withstand a range of loading conditions. (b) Manu-
facturers maintain libraries of basic components for various contexts. We
show angle brackets (top) and bicycle lugs (bottom) for different angle
constraints. (c) Contexts are explored to gauge higher-level trade-offs. For
3D-printing (top), orientation or layer height affect the properties of each
individual part, but engineers also set these print parameters to optimize
the run overall (capacity for other parts, print time, etc.). Assemblies like
bicycles (bottom) require hierarchical design, because the location of func-
tional interfaces (e.g., pivot between red rocker and yellow stay) affects the
achievable performance of the individual parts and the assembly overall.

universally high-performing designs that compare favorably to the

achievable optima in any plausible context. This is more robust

than existing methods, where engineers consider optimal designs

for some “representative” context given by an expected context

distribution or a carefully constructed “worst-case” scenario. Even

when executed well, fixed-context approaches can lead to sensitive

or over-engineered designs that perform sub-optimally once the

context deviates from expectations. However, without access to the

achievable fronts for each context, engineers have no efficient way

to compare the performance that is sacrificed.

The second class contains “building blocks” like the angle bracket

in Fig. 2b, which must assume a specific bending angle (context) for

each use case: shelves are mounted with right-angle brackets, but

solar panels may require specialized acute angles for optimal power

output. Within each context, the bracket’s design parameters (e.g.,

side length, material thickness, bend radius) must be optimized for

metrics like mass and compliance. This is expensive with existing

tools, so engineers maintain a library of optimal designs for common

contexts and compute the solutions for each non-standard request

independently. Our approach permits fast adaptation to special-

ized contexts by providing immediate access to the Pareto-optimal

designs for any context in the range.

Our third class considers hierarchical design (Fig. 2c), where

contexts are used to enforce high-level decisions during low-level

optimizations. This is relevant for complex assemblies like bicycles,

which include dozens of sub-assembly components and hundreds

of tuneable design choices [Seven Cycles 2020]. It is prohibitively

expensive to optimize over the entire system, so engineers must use

a hierarchical approach. First, they block out the rough assembly,

including the length and adjoining angles of the frame tubes and the
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location of pivot points within the rear suspension system [Covill

et al. 2014; Spratt 2019]. Each assembly-level decision dictates the

context of all adjacent parts. Then, each part is optimized for its own

set of performance metrics (e.g., minimal mass and compliance),

while respecting the context required by the global assembly [Bo-

gomonly 2019; Spratt 2019]. Designers typically explore solutions

for many assembly-level configurations, because slight variations

can have a drastic effect on the global performance of the bike

[Covill et al. 2014; PHeller 2014]. However, each assembly-level

change (e.g., pivot position) imposes a new context on the sub-

assembly components, which causes a change in the Pareto set for

each component and triggers additional optimizations. By contrast,

the Pareto gamut provides direct access to the optimized, low-level

parts corresponding to any assembly decision within the specified

range. We expect this to permit more thorough exploration and a

better understanding of each decision’s downstream impacts.

1.2 Our Approach
To permit thorough context exploration, we incorporate continuous-

valued context variables into the multi-objective optimization for-

malism. We also provide a global/local algorithm that seeks the

Pareto front at every context in a desired range simultaneously,

rather than discovering one fixed-context “slice” at a time. This

collection of Pareto fronts forms a new object, which we call the

Pareto gamut (Fig. 1).
Our Pareto gamut discovery algorithm alternates between two

steps. First, we use global optimization to uncover a few points on

the Pareto gamut. Then, we perform local exploration to uncover

Pareto-optimal designs in the neighborhood of each known point.

This exploration uses a first-order approximation that takes a single

Pareto-optimal point in some context and identifies directions in

the joint design-context space along which we can walk without

leaving the Pareto gamut. By sharing information across contexts

and uncovering entire patches of the Pareto gamut at once, our

approach amortizes the cost of optimization and permits thorough

context exploration at a fraction of the traditional cost.

Our contributions include:

• a formal notion of context parameters and Pareto gamuts,

• a mathematical framework for variable-context optimization,

• a discovery algorithm for the full Pareto gamut, and

• real-world problem classes that benefit from variable-context

optimization.

Although our theory extends to any problem size, we focus on

examples with a total of at most 4 performance metrics and context

variables for computational reasons (discussed in §6 and §7).

2 RELATED WORK
Multi-Objective Optimization. We present a brief overview of

multi-objective optimization methods, and refer the reader to Cho

et al. [2017] and Marler and Arora [2004] for additional depth. Multi-

objective optimization algorithms are classified into three categories,

based on the timing of user guidance relative to optimization: before

(a priori), during (interactive), or after (a posteriori) [Van Veldhuizen

and Lamont 2000]. Interactive and a priori methods allow users to

guide the optimization toward “desirable” regions [Koyama et al.

2020; Marler and Arora 2004; Meignan et al. 2015; Ruiz et al. 2019].

These approaches require relatively few samples, but user-guided

exploration is biased toward known solutions, which reinforces user

expectations and impedes novel insights. By contrast, a posteriori
methods solicit user preferences only after the Pareto front has

been discovered. Popular a posteriori methods include Normalized

Boundary Intersection methods [Das and Dennis 1998], Normalized

Normal Constraint methods [Messac et al. 2003], and evolutionary

algorithms [Deb and Jain 2014; Deb et al. 2002; Zhang and Xing

2017]. By exposing Pareto-optimal designs before seeking input, a
posteriori algorithms improve users’ understanding of the attainable

trade-offs while mitigating known-solution biases.

We develop an a posteriori approach over the joint design-context

space. This enables full exploration of fixed-context Pareto fronts,

while highlighting how the fronts vary when the context changes.

Continuation Methods for Multi-Objective Optimization. The afore-
mentioned algorithms share a common pitfall: each point on the

front must be found independently. This is inefficient, as it neglects

the fact that Pareto-optimal points are typically clustered together.

Via an extension of the classical KKT conditions [Karush 1939; Kuhn

and Tucker 1951] (see §3), solutions of multi-objective optimization

problems satisfy a constrained system of nonlinear equations with

locally continuous solution manifolds [Hillermeier 2001a,b]. This

permits the use of path-following methods, or continuation schemes,
which discover optimal neighborhoods around each known solution.

Rakowska et al. [1991] first applied this approach to bi-objective

problems, revealing interpretable design families and explanations

for discrete jumps within the Pareto set for specific problems. This

work was generalized for 𝑘 objectives [Hillermeier 2001a; Martín

and Schütze 2018], but these papers only consider local expansion

from a single known solution. To discover disconnected Pareto

sets, recent works embed local continuation schemes in global/local

discovery algorithms, as in the interactive method of Schütze et al.

[2019] and the a posteriori approach of Schulz et al. [2018].

Our global/local discovery algorithm is closest to that of Schulz

et al. [2018]. We generalize this algorithm and its supporting theory

to permit context exploration during the discovery phase. This

requires a new data structure and revisions to the global sampling,

optimization, and local exploration steps. On the theoretical side,

we generalize the perturbative step in Schulz et al. [2018] and the

predictor step inMartín and Schütze [2018] by deriving the context’s

impact on the shape of the Pareto front. Our algorithm is unique in

its ability to discover many fixed-context fronts simultaneously.

Performance-Driven Design. Optimization is essential for identi-

fying feasible designs that realize some high-level functional speci-

fication. Many functional goals have been explored, including bal-

ance [Prévost et al. 2013; Wang and Whiting 2016], light reflection

[Schwartzburg et al. 2014], acoustic properties [Bharaj et al. 2015; Li

et al. 2016], and deformation under a given load [Chen et al. 2014].

Some methods incorporate user feedback in the design loop, cou-

pled with optimizations that guide the user toward viable designs

for e.g. functional furniture [Umetani et al. 2012; Yao et al. 2017]

or stable-flying multicopters and gliders [Du et al. 2016; Umetani

et al. 2014]. Most of these works are restricted to single-objective

optimization, and none consider generic context parameters.
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There is, however, a growing body of work that considers optimal

structural design under a parametrized set of loading conditions.

Zhou et al. [2013] optimize the structural integrity of 3D printed

structures based on geometry and material alone, with no assump-

tions about the specific incident load. Panetta et al. [2017] develop

methods tominimize the stress concentration of periodic microstruc-

tures under all unit loads, while Schumacher et al. [2018] optimize

the strength and balance of large-scale 3D-printed objects under

unknown external loads. Similarly, Ulu et al. [2017] optimize struc-

tures to be as lightweight as possible, while ensuring robustness

under any incident force configuration within a set force-magnitude

budget. In general, these methods handle uncertainty or variability

by computing a worst-case load, which accounts for all of the most

problematic loading conditions. This is particularly useful if the

engineer has little insight about which loading conditions to ex-

pect, because it effectively optimizes over the full range of contexts

to identify the most critical case(s). However, the conservative na-

ture of this approach can result in designs that are over-engineered

(and thus, sub-optimal) with respect to any particular context they

may encounter. By contrast, we expose the Pareto fronts for a wide

range of plausible contexts, each of may reflect some portion of

the “worst-case” aggregate. This provides complementary insight

regarding a chosen design’s optimality (or lack thereof) relative to

the achievable trade-offs for any particular load that may occur.

Design Exploration. We also draw inspiration from methods that

explore a design space, such as the recent works that seek the gamut

of material properties achievable by a fabrication device [Bickel

et al. 2010; Dong et al. 2010; Zhu et al. 2017]. These methods probe

the design space strategically to achieve a functional goal. Other

methods traverse the entire design space so users can efficiently

focus on any region of interest [Shugrina et al. 2015]. One such

method by Schulz et al. [2017] discusses a special case of context

parameters, by interpolating e.g. stress distributions on a mesh

subject to distinct loading conditions. However, each load must be

selected and precomputed individually on the adaptive grid samples.

Our approach draws on all of these methods to achieve our hybrid

goal: to thoroughly explore all contexts in a given range, while only

presenting the Pareto-optimal designs for each context.

3 FIXED-CONTEXT PARETO OPTIMALITY
This section reviews the classical theory for fixed-context optimiza-

tion. Consider a problem parameterized by 𝐷 design and 𝐶 context

parameters. Any solution can be represented by a design point

x ∈ R𝐷 and a context z ∈ R𝐶 . For example, a wind turbine might be

prescribed by three design variables (radius, height, and pitch angle;

𝐷 = 3) and one context parameter (wind speed; 𝐶 = 1). We control

the feasible set of values for each variable using constraint functions

𝑔𝑘 (x, z) : R𝐷 × R𝐶 → R encoding the constraint 𝑔𝑘 (x, z) ≤ 0. For

the wind turbine, constraints may include an upper bound on the

blade radius or a minimal stress rating. We denote our constraints

𝑔𝑘 (x, z) as active if 𝑔𝑘 (x, z) = 0 and inactive if 𝑔𝑘 (x, z) < 0.

The classical definition of Pareto optimality assumes that the

context z ∈ R𝐶 is fixed to a particular value z = z∗ a priori. Since
z∗ is effectively a constant, it is typically excluded from the nota-

tion. However, we preserve this dependence in anticipation of our

Fz*(x)

x1

x2

f1

f2

Design Space Performance Space

Fig. 3. Fixed-context design space Xz∗ and performance space 𝐹z∗ (Xz∗ )
(gray). The fixed-context Pareto set Pz∗ (red, orange and purple) contains the
design points with optimal performance trade-offs; these points map onto
the Pareto front 𝐹z∗ (Pz∗ ) . Colors represent contiguous solution manifolds
in Xz∗ ; color is preserved when mapped into performance space. Any ray
from the origin (blue) intersects the Pareto front at most once.

variable-context formulation in §4. We begin by formalizing the

fixed-context design space, as illustrated in Fig. 3:

Definition 3.1 (Design Space). For fixed context z∗ ∈ R𝐶 , the
feasible design space is defined as

Xz∗ := {x = (𝑥1, . . . , 𝑥𝐷 ) ∈ R𝐷 | 𝑔𝑘 (x; z∗) ≤ 0,∀𝑘 ∈ {0, . . . , 𝐾}} .

Intuitively, the design space represents the set of valid, manufac-

turable designs corresponding to the given context z∗.
Each design in this space can be evaluated with respect to a set

of 𝑑 performance metrics 𝑓𝑖 (x; z∗) : R𝐷 → R. For most engineering

problems, 𝑑 ≪ 𝐷 . We let 𝐹z∗ (x) : R𝐷 → R𝑑 be the concatenation

of all performance metrics:

𝐹z∗ (x) := (𝑓1 (x; z∗), . . . , 𝑓𝑑 (x; z∗)).
The image of the feasible set Xz∗ under the performance metrics

yields the performance space:

Definition 3.2 (Performance Space). The fixed-context performance
space is the image of the design space Xz∗ under the map 𝐹z∗ :

𝐹z∗ (Xz∗ ) ⊆ R𝑑 .

Without loss of generality, we assume that small 𝑓𝑖 values are prefer-

able. Then, our multi-objective optimization problem can be notated

min

x
{𝑓𝑖 (x; z∗)} subject to x ∈ Xz∗ . (1)

Solutions of Eqn. 1 are Pareto-optimal in the following sense:

Definition 3.3 (Dominance). Let x, x̂ ∈ Xz∗ be feasible design

points. We say x̂ dominates x in context z∗ if x̂ performs at least as

well as x on all metrics:

𝑓𝑖 (x̂; z∗) ≤ 𝑓𝑖 (x; z∗),∀𝑖 ∈ {1, . . . , 𝑑},
and x̂ is strictly better than x on at least one metric:

∃𝑖 ∈ {1, . . . , 𝑑} s.t. 𝑓𝑖 (x̂; z∗) < 𝑓𝑖 (x; z∗) .

Definition 3.4 (Pareto Optimality). A point x ∈ Xz∗ is Pareto-
optimal if there does not exist any x̂ ∈ Xz∗ that dominates x. The set
of Pareto-optimal points is the fixed-context Pareto set Pz∗ ⊆ R𝐷 ;
the image 𝐹z∗ (Pz∗ ) ⊆ R𝑑 is the fixed-context Pareto front.
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Assuming nonnegative performance metrics, Pareto optimality

can be illustrated as in Fig. 3. For any ray drawn from the origin

in direction 𝛼 ∈ R𝑑+, there exists at most one 𝑡 ≥ 0 such that

𝑡𝛼 ∈ 𝐹z∗ (Pz∗ ). Thus, for minimization, the best designs are those

that map closest to the origin along different directions.

Generically, the Pareto front and set are composed of collections

of (𝑑 − 1)-dimensional manifolds [Hillermeier 2001a], implying that

almost any Pareto-optimal design sits within some Pareto-optimal

neighborhood. This insight is exposed via the dual formulation of

Eqn. 1, as expressed by the KKT conditions [Hillermeier 2001b]:

Proposition 3.5 (KKT conditions). Let 𝑓𝑖 and𝑔𝑘 be continuously
differentiable, and assume the vectors

{∇𝑥𝑔𝑘′ |𝑘 ′ is an index of an active constraint}
are linearly independent. Then, for any x∗ ∈ Pz∗ , there exist dual
variables 𝜶 ∗ ∈ R𝑑 , 𝜷∗ ∈ R𝐾 such that:

x∗ ∈ Xz∗ , (2)

𝛼∗𝑖 ≥ 0 ∀𝑖 ∈ {1, . . . , 𝑑}, (3)

𝛽∗
𝑘
≥ 0 ∀𝑘 ∈ {1, . . . , 𝐾}, (4)

𝑑∑
𝑖=1

𝛼∗𝑖 = 1, (5)

𝛽∗
𝑘
𝑔𝑘 (x∗; z∗) = 0 ∀𝑘 ∈ {1, . . . , 𝐾}, and (6)[
𝑑∑
𝑖=1

𝛼∗𝑖 ∇x 𝑓𝑖 (x
∗
; z∗)

]
+
[
𝐾∑
𝑘=1

𝛽∗
𝑘
∇x𝑔𝑘 (x∗; z∗)

]
= 0. (7)

The KKT conditions are necessary (although not sufficient) for

Pareto optimality. Thus, to identify Pareto candidates around a

known Pareto-optimal point (x∗; z∗), we can search for points that

locally preserve the KKT conditions. In particular, we differentiate

the KKT conditions with respect to x and set this derivative equal to

zero, yielding a first-order approximation of the Pareto front about

(x∗; z∗). Practically, this reveals (𝑑 − 1) orthogonal directions x′ ∈
Xz∗ along which we can walk without violating the KKT conditions.

This observation is the crux of fixed-context continuation schemes

[Hillermeier 2001a; Martín and Schütze 2018; Schulz et al. 2018],

and forms the basis of our local exploration as well (§4.3).

4 PARETO GAMUTS
Fixed-context Pareto optimality allows engineers to compute design

trade-offs for any particular context, e.g., a turbine under fixed wind
speed 𝑉 . To select a turbine that performs well overall, however,

engineers must explore designs over a range of possible wind speeds.
To facilitate this context exploration, we introduce the Pareto

gamut, which captures the optimal designs at all contexts in a given

range. Intuitively, the Pareto gamut is a collection of fixed-context

Pareto fronts that are stacked along an additional axis according to

their context value, as illustrated in Fig. 4.

This section formally defines the Pareto gamut (§4.1) and the

technical distinction between context and design variables (§4.1.1,

§4.2). By accounting for each variable type, we also derive the first-

order approximation to the Pareto gamut (§4.3), which exposes

KKT-preserving perturbations for design and context values.

(in Augmented Design Space)

x1

x2

z
Pareto Gamut

(in Augmented Performance Space)

f1

f2

z

Augmented Design Space

x1

x2

z

F(x, z)

Augmented Performance Space

f1

f2

z

F(x, z)

Pre-Image of Pareto Gamut

Fig. 4. (Top) Augmented design (performance) space is the union of many
fixed-context design (performance) spaces, drawn in gray. Each fixed context
admits a corresponding Pareto set (front), with contiguous families shown
in orange, purple, and red. (Bottom) The Pareto gamut 𝐹 (P) is the union
of all Pareto fronts in augmented performance space; the pre-image of the
Pareto gamut P is the union of all Pareto sets in augmented design space.

4.1 Formal Definition
Given a bounded range of interest [𝑧min

𝑖
, 𝑧max

𝑖
] for each context

parameter, the set of context configurations is as follows:

Definition 4.1 (Context Space). The context space Z is given by

Z := {z = (𝑧1, . . . , 𝑧𝐶 ) ∈ R𝐶 | 𝑧min

𝑖 ≤ 𝑧𝑖 ≤ 𝑧max

𝑖 , ∀𝑖 ∈ {1 . . .𝐶}} .

Each z∗ ∈ Z yields a distinct Pareto set and front. To organize

these objects, we define the following augmented spaces:

Definition 4.2 (Augmented Spaces). The augmented design space is

X := {(x, z) ∈ R𝐷 × R𝐶 | z ∈ Z and 𝑔𝑘 (x, z) ≤ 0∀𝑘 ∈ {0, . . . , 𝐾}} .

The augmented performance space is the image of the augmented

design space under the map 𝐹 (x, z) : R𝐷 × R𝐶 → R𝑑 × R𝐶 , where
𝐹 (x, z) := (𝐹z (x), z).

As shown in Fig. 4, the augmented design (performance) space

can be visualized by stacking fixed-context design (performance)

spaces along a context axis. Each fixed-context design (performance)

space contains a Pareto set (front), as shown by the manifolds in

Fig. 4 (top). The collection of these Pareto sets (fronts) is our object

of study (Fig. 4, bottom). We define this object as follows:
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Definition 4.3 (Pareto Gamut). The Pareto gamut 𝐹 (P) is the union
of all fixed-context Pareto fronts in augmented performance space:

𝐹 (P) =
⋃
z∗∈Z

𝐹z∗ (Pz∗ ) ⊆ R𝑑 × R𝐶 .

The pre-image of the Pareto gamut is denoted P ⊆ R𝐷 × R𝐶 .

The Pareto gamut characterizes the full set of trade-offs at any

context configuration, and encodes how these trade-offs change as

a function of the context.

4.1.1 Context Parameters: A Novel Entity. The Pareto gamut differs

from any fixed-context Pareto front because context parameters are

distinct from existing machinery in multi-objective optimization.

We validate this with two brief thought experiments to the contrary.

If we treated the context as a performance metric, we would un-

justly penalize large context values and bias our solutions toward

high-performing designs with small context values. Alternatively, if

we were to treat context parameters as design variables, we would

only be able to identify the joint context/design configurations with

optimal trade-offs. This yields a subset of the Pareto gamut contain-

ing the best-performing designs from any context in the permissible

range – such as the long-bladed turbines in high wind speeds, which

dominate all designs from lower speeds (§1). We examine this subset

more closely in §4.2. For now, we note that neither of these context-

parameter treatments yield the full Pareto gamut, which captures

the entire set of trade-offs under any particular context. Thus, the

context parameters must be handled as a novel entity.

In particular, a point (x∗, z∗) on the Pareto gamut is (by construc-

tion) only necessarily Pareto optimal w.r.t. its fixed context z∗. As
in previous work, this implies that context values must be held

constant during optimization. However, as discussed in §4.3, the

Pareto gamut formalism allows us to relax this constraint during

non-optimization steps, to efficiently explore varying contexts.

4.2 Gamut Lower Envelope
The lower envelope of the Pareto gamut contains the best achievable

trade-offs over all contexts (Fig. 5). This offers important intuition,

because it is precisely the solution we would get if we were to treat

the context parameters as design variables during optimization.

Definition 4.4 (Lower Envelope). The lower envelope 𝐹 (L) of a
Pareto gamut 𝐹 (P) is the set of gamut points that are not dominated

by points in another context:

𝐹 (L) := {𝐹 (x, z) ∈ R𝑑 × R𝐶 | �(x̂, ẑ) ∈ P that dominates (x, z)} .
(8)

The flattened lower envelope 𝐹⊥ (L) ⊆ R𝑑 is obtained by projecting

away the context dimensions of all points in 𝐹 (L).

We illustrate the lower envelopes in Fig. 5. The flattened lower

envelope is particularly useful, as it relates to the Pareto front of a

modified problem that treats context parameters as design variables:

Definition 4.5 (Free-Context Problem). The free-context problem
𝐻𝐹 (𝒚) : R𝐷+𝐶 → R𝑑 is a modified version of 𝐹 that treats all context

parameters of 𝐹 as additional design variables that can be optimized.

Namely, the design variables are 𝒚 := (𝑥1, . . . , 𝑥𝐷 , 𝑧1, . . . , 𝑧𝐶 ) ∈ X,
and each metric is ℎ𝑖 (𝒚) = 𝑓𝑖 (x, z).

Fig. 5. The Pareto gamut’s lower envelope (red curve, left) contains the best
achievable trade-offs over all contexts. By projecting away the context axes,
we obtain the flattened lower envelope (red curve, right). The Pareto gamut
(mesh) is colored by context (𝑧) value. Blue curves indicate fixed-context
Pareto fronts, and black asterisks mark the utopia point for each context
(𝑓1 (x; z) = 𝑓2 (x; z) = 0). The lower envelope spans many contexts.

The definition of Pareto optimality for 𝐻𝐹 in the free-context prob-

lem is precisely Eqn. 8 in Definition 4.4. Hence, we have the follow-

ing proposition:

Proposition 4.6 (Lower Envelope Optimality). For variable-
context objective function 𝐹 (x, z) : R𝐷 × R𝐶 → R𝑑 × R𝐶 , we have
𝐻𝐹 (P) = 𝐹⊥ (L), where 𝐻𝐹 (P) is the Pareto front of the free-context
problem 𝐻𝐹 and 𝐹⊥ (L) is the flattened lower envelope defined above.

Proposition 4.6 exposes a direct correlation between the lower en-

velope of our Pareto gamuts and a related Pareto front that can

be obtained via existing multi-objective optimization benchmarks.

We use this property in §6.1 to validate our approach against fixed-

context multi-objective optimization benchmarks.

4.3 First-Order Approximation
To discover the Pareto gamut efficiently, we develop a first-order

approximation that identifies optimal neighborhoods around known-

optimal points. We build on the approach from §3, which yields

directions 𝑥 ′ ∈ Xz∗ that preserve the KKT conditions within a fixed

context z∗. Since the Pareto gamut is a collection of fixed-context

fronts, its approximationmust also permit us tomove across contexts
without violating the KKT conditions. Thus, we seek generalized

directions (x′, z′) ∈ X s.t. the neighbor (x̂, ẑ) := (x∗, z∗) + 𝑡 · (x′, z′)
satisfies the KKT conditions w.r.t. its fixed-context ẑ.
Intuitively, we expect (𝑑 − 1 +𝐶) such directions, as the Pareto

gamut can be seen as an extrusion of some fixed-context front

(of dimension 𝑑 − 1) through a 𝐶-dimensional context space. This

provides geometric insight about our directions and those from

previous works: the latter form a (𝑑 − 1)-dimensional subspace of

the (𝑑 − 1 +𝐶)-dimensional space spanned by ours (see Fig. 6).

We formalize this intuition in the following proposition, which

constructs a linear system that yields the desired directions (x′, z′):

Proposition 4.7 (Augmented KKT Perturbation). Suppose
(x(𝑡), z(𝑡)) : (−𝜀, 𝜀) → R𝐷 × R𝐶 is composed of Pareto-optimal
points, that is, (x(𝑡), z(𝑡)) ∈ Pz(𝑡 ) for all 𝑡 ∈ (−𝜀, 𝜀). Let 𝑓𝑖 and 𝑔𝑘
be continuously differentiable for 1 ≤ 𝑖 ≤ 𝑑 and 1 ≤ 𝑘 ≤ 𝐾 ′, where
𝐾 ′ ≤ 𝐾 is the number of active constraints at (x(0), z(0)). Let 𝜶 (𝑡)
and 𝜷 (𝑡) be the KKT dual variables at (x(𝑡), z(𝑡)) (see Proposition
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Fig. 6. Existing continuation schemes identify a (𝑑 − 1)-dimensional ap-
proximation (red curve) within a single fixed context of the Pareto gamut.
Proposition 4.7 describes a (𝑑 − 1 +𝐶)-dimensional approximation (colored
mesh) that contains the previous work as a subspace, while also encoding
how the Pareto set/front change as a function of the context. Our approxi-
mation is colored by its error relative to the ground truth (wireframe).

3.5). Then, for any KKT-preserving perturbation 𝑣 ,
1 0 0 0
0 0 𝐷x𝐺 𝐷z𝐺

𝐷𝑥𝐹
𝑇 𝐷𝑥𝐺

𝑇 𝐻𝑥 𝐻𝑧

︸                                    ︷︷                                    ︸
𝑀 ∈R(1+𝐾′+𝐷 )×(𝑑+𝐾′+𝐷+𝐶 )


𝜶 ′(0)
𝜷 ′(0)
x′(0)
z′(0)

︸   ︷︷   ︸
𝑣∈R(𝑑+𝐾′+𝐷+𝐶 )

= 0 , (9)

where 𝐺 (x, z) := (𝑔1 (x, z), . . . , 𝑔𝑘 (x, z)),

𝐻𝑥 :=

𝑑∑
𝑖=1

𝛼𝑖 (0)𝐻𝑥𝑥 𝑓𝑖 (x(0), z(0)) +
𝐾 ′∑
𝑘=1

𝛽𝑘 (0)𝐻𝑥𝑥𝑔𝑘 (x(0), z(0)) , and

𝐻𝑧 :=

𝑑∑
𝑖=1

𝛼𝑖 (0)𝐻𝑥𝑧 𝑓𝑖 (x(0), z(0)) +
𝐾 ′∑
𝑘=1

𝛽𝑘 (0)𝐻𝑥𝑧𝑔𝑘 (x(0), z(0)) .

For a function 𝑋 (𝑢, 𝑣), the expression 𝐷𝑢𝑋 denotes the Jacobian

of 𝑋 w.r.t. the variables 𝑢. Similarly, 𝐻𝑢𝑣𝑋 denotes the matrix of

second derivatives obtained by taking the partials of 𝑋 w.r.t. 𝑢 and

then 𝑣 . All 𝐷𝑢𝑋 and 𝐻𝑢𝑣𝑋 in Eqn. 9 are evaluated at (x(0), z(0)).
We provide a constructive proof for Proposition 4.7 in Appendix A

and a detailed algorithm for its computation in §5.

Remark 1. Eqn. 9 is a generalization of the results given by Schulz
et al. [2018, Proposition 5.1] and Martín and Schütze [2018, Theorem
3.1]. If z′(𝑡) ≡ 0 (i.e., if we do not allow the context to change), we
recover the expressions from previous work.

To verify our result, we analyze the number of exploration direc-

tions, 𝑣 . As shown in Eqn. 9, all directions 𝑣 reside in the null space

of 𝑀 . The rank of 𝑀 is at most min(#rows, #cols) = min(1 + 𝐾 ′ +
𝐷,𝑑 + 𝐾 ′ + 𝐷 +𝐶) = 𝐷 + 1 + 𝐾 ′. Then, the Rank Nullity theorem

bounds the number of independent directions 𝑣 :

nullity(𝑀) = #columns(M) − rank(𝑀)
≥ (𝑑 + 𝐾 ′ + 𝐷 +𝐶) − (1 + 𝐾 ′ + 𝐷)
= 𝑑 − 1 +𝐶 .

Thus, by computing the null space of𝑀 , we generically obtain a set

of at least𝑑−1+𝐶 directions along which we can walk in augmented

design space without violating the KKT conditions. As discussed,

the exact case (nullity(𝑀) = 𝑑−1+𝐶) is the expected dimensionality

for our approximation. Additional directions typically indicate that

some design variables (or combinations thereof) have no effect on

the performance metrics locally. In this case, it is sufficient to select

any subset of 𝑑 − 1 +𝐶 directions at random, and discard the rest.

We also considered higher-order approximations, but they are

prohibitively expensive to compute. We find that affine expansions

are sufficiently accurate, even when P is disconnected or curved.

5 PARETO GAMUT DISCOVERY
Given the user’s performance objective 𝐹 , constraints 𝐺 , and aug-

mented design space X, we compute the Pareto gamut 𝐹 (P) and its
pre-image P. Each iteration of our algorithm (Alg. 1) begins with

𝑁𝑠 points sampled from X. Each sample is optimized within its

fixed context, such that it satisfies the KKT conditions (Proposition

3.5). We then apply Proposition 4.7 to compute a first-order approx-

imation about each optimized sample. The resulting (𝑑 − 1 + 𝐶)-
dimensional patches are stored and sampled to provide seed points

for the next iteration. Discovery continues in this manner until the

Pareto gamut converges or the user’s computation budget is reached.

Below, we detail the necessary data structures and subroutines.

5.1 Data Structure
Our approach discovers continuous manifolds along the Pareto

gamut, each of which may span a wide range of performance and

context values. We represent each manifold with a simple patch
struct containing a unique patch ID and information about the patch

in continuous and discrete forms. For the continuous representation,

we store (1) the optimized center point (x∗, z∗) ∈ X and its image

𝐹 (x∗, z∗), and (2) the set of 𝑑 −1+𝐶 expansion directions that define

the locally optimal manifold in X. We also use the patch struct to

store a set of discrete points (x, z) ∈ X on this expanded patch,

along with the image 𝐹 (x, z) of each patch point. The resulting

patch struct is then appended to a list called the patch array.
Although the patch array is a natural way to store this data, it is

not well-suited to measure coverage, convergence, or dominance.

We address this with an acceleration structure: the augmented buffer

f1

f2

z

(see inset). As discussed in §3, any ray

𝛼 ∈ R𝑑+ from the origin intersects the

fixed-context Pareto front 𝐹z∗ (Pz∗ )
at most once. This lets us discretize

𝐹z∗ (Pz∗ ) using (hyper)spherical co-

ordinates: the angle vector 𝜙 ∈
[0, 𝜋/2]𝑑−1 indicates a performance

trade-off (ray direction), and the

smallest radius 𝑟 for which 𝜙 inter-

sects the feasible performance space

indicates the Pareto front candidate.

For the Pareto gamut, we use (hyper)cylindrical coordinates: the con-

text spaceZ ⊂ 𝐹 (X) is discretized using 𝐶 Cartesian coordinates,

and the performance space uses 𝑑 − 1 (hyper)spherical dimensions.

The number of cells 𝑁𝑐 along each dimension is user-specified.

When a new patch is found, we insert its patchID and discretized

patch points 𝐹 (x, z) into the augmented buffer. Each point is con-

verted to (hyper)cylindrical coordinates then projected into the
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ALGORITHM 1: Pareto gamut discovery

Input: Perf. metrics 𝐹 , constraints𝐺 , augmented design space X
Output: Pareto Gamut 𝐹 (P) and its pre-image P
𝐵 ← Empty Augmented Buffer

𝑃 ← [] ⊲ empty Patch Array

patchID← 0

repeat
(x

0
, z∗

0
), . . . , (x

𝑁𝑠
, z∗
𝑁𝑠
) ← stochasticSampling(X, 𝑃 )

for 𝑖 = 0 : 𝑁𝑠 do
(x∗,𝜶 ∗, 𝜷∗)← fixedContextOptimization(x𝑖 , 𝐹z∗

𝑖
,𝐺z∗

𝑖
)

(dirs, extents, degenerate)← localExplorationDirections(x∗,
z∗
𝑖
, 𝜶 ∗, 𝜷∗, 𝐹 ,𝐺 )

if not degenerate then
patchID++
patchPts← patchEvaluation(x∗, z∗

𝑖
, dirs, extents, 𝐹 , X)

patchStruct← (patchID, x∗, z∗
𝑖
, 𝐹 (x∗, z∗

𝑖
) , dirs, extents,

patchPts)
𝑃 .append(patchStruct)
𝐵.addPatch(patchID, patchPts)

end
until computation budget exceeded or converged (see 5.2)
(P, 𝐹 (P)) = extractParetoGamut(𝐵, 𝑃 )

return P, 𝐹 (P)

appropriate buffer cell (blue wedge in the inset). To judge conver-

gence, coverage, and Pareto-optimality, we need only store each

point’s radius from its fixed-context origin and a reference to its

details in the patch array.

5.2 Discovery Algorithm
Our global/local discovery algorithm (Alg. 1) consists of 4 simple

steps: (1) randomly select seed points in joint context-design space;

(2) push each seed point toward its fixed-context Pareto front; (3)

compute a set of KKT-preserving exploration directions about each

optimized point; and (4) evaluate the patch spanned by the explo-

ration directions to uncover neighborhoods of Pareto-optimal de-

signs. These steps are repeated until either the Pareto gamut con-

verges or the permissible computation budget is exceeded.

Stochastic Sampling. To avoid local minima, each iteration begins

with a user-specified number 𝑁𝑠 of random samples (x
𝑖
, z∗
𝑖
) ∈ X

for 𝑖 = 1 . . . 𝑁𝑠 . In the first iteration, samples are selected uniformly

at random from X. Uniform sampling is also used in the final itera-

tion(s) before convergence, to promote a globally robust solution.

For all other iterations, each sample is obtained by selecting a patch

at random, traversing to a random point on the patch, and comput-

ing a new sample (x
𝑖
, z∗
𝑖
) using the perturbative formula from Schulz

et al. [2018, §6.2.2]. We clamp all results to ensure (x
𝑖
, z∗
𝑖
) ∈ X.

Fixed-Context Optimization. Each sample (x
𝑖
, z∗
𝑖
) is optimized

toward its fixed-context Pareto front 𝐹z∗ (Pz∗ ) using the scalar-

ization procedure detailed in Alg. 2. This yields an optimal point

(x∗
𝑖
, z∗
𝑖
) ∈ X and its corresponding KKT dual variables, 𝜶 ∗, 𝜷∗. We

use MATLAB’s fmincon routine for constrained optimization.

Exploration Directions. For each (x∗
𝑖
, z∗
𝑖
), we then apply Proposi-

tion 4.7 to extract (𝑑−1+𝐶) KKT-preserving directions. As shown in

ALGORITHM 2: fixedContextOptimization

Input: Random sample x, fixed-context perf. metrics 𝐹z∗ ,

fixed-context constraints𝐺z∗

Output: Optimized point x∗, KKT dual variables 𝜶 ∗, 𝜷∗

⊲ Get target 𝑡 ∈ 𝐹z∗ (Xz∗ ) for scalarization

𝑝in ← 𝐹z∗ (x)
𝛼 ← 𝑝

in

| |𝑝
in
| |
1

⊲ approx. tradeoff between metrics

𝑝
goal
← [min(1, 2 ∗ (𝛼𝑖 − 1/𝑑)) for 𝑖 = 1 : 𝑑 ]

dir← 𝑝
goal
−𝑝

in

| |𝑝
goal
−𝑝

in
| |
2

𝒕 ← 𝑝in + 𝛿dir · | |𝑝in | |2 · dir ⊲ 𝛿dir is user-specified

⊲ Optimize within fixed context

𝑓𝑠 (𝒚) ← 1

2
| |𝐹z∗ (𝒚) − 𝒕 | |2 ⊲ scalarization function handle

[x∗,𝝀 ] ← constrainedOptimization(𝑓𝑠 , x,𝐺z∗ )

while 𝐹z∗ (x∗) dominates 𝒕 do
𝒕 ← 𝒕 + 𝛿 · dir ⊲ push target further; x∗ not optimal

𝑓𝑠 (𝒚) ← 1

2
| |𝐹z∗ (𝒚) − 𝒕 | |2 ⊲ new scalarization

[x∗,𝝀 ] ← constrainedOptimization(𝑓𝑠 , x∗,𝐺z∗ )

end

𝜶 ∗ ← 𝐹z∗ (x∗ )−𝒕
| |𝐹z∗ (x∗ )−𝒕 | |1

𝜷∗ ← 𝝀 ⊲ Lagrange multipliers for 𝐺z∗ at (x∗; z∗)
return x∗,𝜶 ∗, 𝜷∗

Alg. 3, the output of Proposition 4.7 requires some post-processing.

Our linear system yields vectors of the form (𝜶 ′, 𝜷 ′, x′, z′)𝑇 , so
the directions of interest (x′, z′) may be linearly dependent. More-

over, performance metrics are often disproportionately sensitive

to changes in context value; thus, context perturbations appear in

many of the directions, and the magnitude of these perturbations

overshadows that of the design variables, which reduces movement

“within” each fixed context. The Gaussian elimination and extent-

finding steps described in Alg. 3 mitigate these issues by eliminat-

ing redundancy in the directions and encouraging similarly-scaled

movement across and within distinct contexts.

Patch Evaluation. The span of all (x′, z′) yields a (hyper)rectangular
patch𝐴𝑖 ⊆ R𝐷 ×R𝐶 , bounded by the computed extent along each di-
rection. To sample 𝐹 (𝐴𝑖 ) for insertion into the buffer, we discretize

𝐴𝑖 as a uniform grid (with user-specified dimensions) and evaluate

𝐹 at each vertex. Any vertices (x, z) ∉ X are discarded before evalu-

ation. Because 𝐴𝑖 is connected and 𝐹 is continuous, the true image

𝐹 (𝐴𝑖 ) should be connected. However, our discretized vertices may

skip over cells of the augmented buffer due to undersampling. To

promote the likelihood that our patch contributes a sample to each

cell intersecting 𝐹 (𝐴𝑖 ), we lift a fixed triangulation of the grid on

𝐴𝑖 to triangulate our (hyper)cylindrical augmented performance

points in design space. We use this triangulation to compute (𝑑 +𝐶)-
dimensional barycentric coordinates for every buffer cell within the

boundary of 𝐹 (𝐴𝑖 ). We cannot directly interpolate along our approx-

imation of 𝐹 (𝐴𝑖 ), as this may introduce infeasible points when the

gamut is non-convex. Instead, we use the barycentric coordinates

to interpolate along 𝐴𝑖 ; then, we map the interpolated point(s) back

to performance space for insertion into the buffer.
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ALGORITHM 3: localExplorationDirections
Input: Optimal point x∗, context z∗, KKT dual variables 𝜶 ∗, 𝜷∗, perf.

metrics 𝐹 = (𝑓1, . . . , 𝑓𝑑 ) , constraints𝐺all
= (𝑔1, . . . , 𝑔𝐾 )

Output: Exploration directions dirs, extent to walk along each

direction extents, whether expansion is degenerate
⊲ get exploration directions using Proposition 4.7

𝐺 ← getActiveConstraints(x∗, z∗,𝐺
all
)

(𝐷𝑥𝐺,𝐷𝑧𝐺,𝐷𝑥𝐹 ) ←
(
𝜕𝐺
𝜕x

��
(x∗,z∗ ) ,

𝜕𝐺
𝜕z

��
(x∗,z∗ ) ,

𝜕𝐹
𝜕x

��
(x∗,z∗ )

)
𝐻𝑥,𝐻𝑧← zeroMatrices

for i = 1 : d do
𝐻𝑥 + = 𝛼∗

𝑖
· 𝑓𝑖
𝜕x𝜕x

��
(x∗,z∗ )

𝐻𝑧 + = 𝛼∗
𝑖
· 𝑓𝑖
𝜕x𝜕z

��
(x∗,z∗ )

end
for k = 1 : K’ do

𝐻𝑥 + = 𝛽∗
𝑖
· 𝑔𝑘
𝜕x𝜕x

��
(x∗,z∗ )

𝐻𝑧 + = 𝛽∗
𝑖
· 𝑔𝑘
𝜕x𝜕z

��
(x∗,z∗ )

end

𝑀 ←


1 0 0 0
0 0 𝐷x𝐺 𝐷z𝐺

𝐷𝑥𝐹
𝑇 𝐷𝑥𝐺

𝑇 𝐻𝑥 𝐻𝑧


𝑉 ← null(𝑀) ⊲ each column is a direction [𝜶 ′, 𝜷 ′, x′, z′ ]𝑇

if numCols(𝑉 ) < 𝑑 +𝐶 − 1 then return degenerate=True

if numCols(𝑉 ) > 𝑑 +𝐶 − 1 then
𝑉 ← randomly select 𝑑 +𝐶 − 1 columns of𝑉

𝑉 ← 𝑉 (𝑑 +𝐾 ′ + 1 : end, :)𝑇 ⊲ [x′, z′ ] on each row

𝑉 ← [𝑉 (:, 𝐷 + 1 : 𝑒𝑛𝑑),𝑉 (:, 1 : 𝐷) ] ⊲ [z′, x′ ] on each row

𝑉 ← sort rows of𝑉 in decreasing order of context values

𝑉 ← gaussElimination(𝑉 )

if any row of 𝑉 is zero then return degenerate=True

dirs← [𝑉 (:,𝐶 + 1 : 𝑒𝑛𝑑),𝑉 (:, 1 : 𝐶) ]𝑇 ⊲ [x′, z′ ] on each col

⊲ Compute extent along each dir ∈ X to move unit length in 𝐹 (X)
𝐷𝐹 ← 𝜕𝐹

𝜕 (x,z)
��
(x∗,z∗ )

𝑄 ← 𝐷𝐹 · dirs ⊲ each col gives perturbation in 𝐹 (X)
extents← (1/ | |𝑐𝑜𝑙 | | for each 𝑐𝑜𝑙 in columns(𝑄))

return dirs, extents, degenerate=False

Gamut Convergence. To measure convergence, we must quantify

the quality of our Pareto gamut over time. One popular metric for

fixed-context optimization is hypervolume [Bader and Zitzler 2011].

As shown in the inset, hypervolume (gray)

is the Lebesgue measure of the performance

space region that is strictly dominated by

the candidate Pareto front points (blue), rela-

tive to a “worst case” nadir point – the upper

bound of each 𝑓𝑖 (red). As the front improves,

hypervolume increases strictly monotoni-

cally. Thus, fixed-context methods often de-

clare convergence when the hypervolume improvement falls below
some threshold 𝛿ℎ for 𝑁ℎ consecutive iterations.

For the Pareto gamut, we compute a hypervolume vector 𝑉 𝑡 ,

where𝑉 𝑡
𝑖
is the hypervolume of the 𝑖𝑡ℎ fixed-context Pareto front af-

ter iteration 𝑡 . We consider our gamut converged if the hypervolume

improvement (𝑉 𝑡 −𝑉 𝑡−𝑗 ) (𝑉 𝑡 −𝑉 𝑡−𝑗 )𝑇 < 𝛿ℎ for all 𝑗 ∈ [1 . . . 𝑁ℎ].

Pareto Gamut Extraction. Once the gamut has converged, each

buffer cell contains the Pareto-dominant point 𝑝𝜙 along its respec-

tive ray direction 𝜙 . However, 𝑝𝜙 is not necessarily part of the

Pareto front: it may be excluded if it is dominated by solutions along

different rays. Hence, for each fixed context in the augmented buffer,

we extract 𝐹z∗ (Pz∗ ) according to Definition 3.4.

This set of points (at most one per buffer cell) is often sufficiently

dense to capture the Pareto gamut. However, discretization artifacts

can produce sparse results in certain scenarios. For example, if the

Pareto gamut is asymptotic to the augmented performance axes (as

in Fig. 1), the buffer cells can only provide a sparse sampling in this

region. To address this without resorting to a fine discretization, we

use our patch array to fill gaps in the Pareto gamut after extraction.

In more detail, consider the points in the extracted Pareto gamut

that belong to a given patch 𝐴𝑖 , and let 𝐼 be the pre-image of these

points. Assuming that the true Pareto front contains a contiguous

region of 𝐴𝑖 , the boundary of the point set 𝐼 denotes the maximal

region of the patch𝐴𝑖 that could map to the Pareto gamut. Then, all

patch samples (x, z) ∈ 𝐴𝑖 within this boundary should be eligible

for inclusion in the Pareto gamut. A dense sampling of this patch

region is contained in the patch array, but the buffer (from which

we extract the Pareto gamut) only admits one sample per 𝐴𝑖 per

cell. Thus, the majority of discretized patch samples are never in-

cluded in the buffer or considered as candidates for the extracted

Pareto gamut. By incorporating these samples directly through the

post-processing step described above, we dramatically improve our

coverage of the Pareto gamut with minimal additional cost. To re-

move any dominated points introduced by this process, we run a

final dominance check for each fixed context before returning.

6 RESULTS
We test our approach on two problem classes. First, we adapt analytic

fixed-context benchmarks to validate our algorithm’s correctness.

Then, we explore engineering design problems to show the utility of

our approach and the Pareto gamut more broadly. For all problems,

we normalize the parameters and metrics such that x ∈ [0, 1]𝐷 ,
z ∈ [0, 1]𝐶 , and 𝑓𝑖 ∈ [0, 1] ∀𝑖 ∈ {1 . . . 𝑑}. We set 𝑁𝑐 = 200, 𝑁𝑠 = 10,

𝑑
dir

= 0.3, 𝛿ℎ = 10
−3
, and 𝑁ℎ = 3, with nadir point [1]𝑑 . All Pareto

gamuts are visualized with context along the vertical axis.

6.1 Analytic Results
Since the Pareto gamut is a new object, there are no established

benchmarks to verify our discovery algorithm. We build our own

test suite by adapting fixed-context benchmarks to a contextual

setting. We also derive two methods to verify the correctness of our

discovered Pareto gamut: (1) comparison against analytic solutions

for the Pareto set/front at any given context z∗, and (2) validation

against Proposition 4.6 (Lower Envelope Optimality), which only

requires computing a Pareto front rather than a Pareto gamut.

Modified ZDT Functions. The ZDT test suite [Zitzler et al. 2000]

contains 5 continuous-domain problems for multi-objective opti-

mization, with carefully designed challenges like non-convexity,

multi-modality, and sparse solution density along the front. Each

ZDT function has 𝑑 = 2 performance metrics that depend on 𝑚

design variables 𝒚 = (𝑦1, . . . , 𝑦𝑚). The original problems do not
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ZDT 1 ZDT 2 ZDT 3 ZDT 4 ZDT 6

Fig. 7. Our suite of contextual ZDT solutions. (Top) Analytic ground truth for the Pareto gamut, with 𝑑 = 2 and𝐶 = 1. Colored by context value. (Middle)
Our discovered gamut, colored by distance to the ground truth. (Bottom) Flattened lower envelope of our solution (scatter); colored by distance to the ground
truth Pareto front of the corresponding free-context problem(black line). All discovered solutions use 𝑁𝑐 = 200 cells along each dimension of the buffer.

contain context parameters (𝐶 = 0). To test 𝐶 ≥ 1, we treat some of

the𝑚 design variables as context parameters. We let𝑚 = 𝐷 +𝐶 and

define 𝐹 (x, z) : R𝐷 ×R𝐶 → R𝑑 ×R𝐶 . We preserve the original func-

tion definitions with respect to 𝒚̂ = (𝑥1, . . . , 𝑥𝐷 , 𝑧1, . . . 𝑧𝐶 ) ∈ R𝑚 .

The only difference is our treatment of z, whose values are explored
rather than optimized. Fig. 7 (middle) shows strong agreement be-

tween our discovered Pareto gamut and the analytic ground truth.

Fig. 7 (bottom) also validates our results against Proposition 4.6 by

examining our Pareto gamut’s flattened lower envelope. By construc-

tion, the corresponding free-context problem 𝐻𝐹 (𝒚) is the original
ZDT problem over𝑚 design variables, and its Pareto front𝐻𝐹 (P) is
the well-established ZDT solution. As expected, our Pareto gamut’s

flattened lower envelope matches each established solution well.

Despite strong agreement overall, two discretization artifacts in-

vite discussion. ZDT4 highlights that our discretization must be

fine enough to capture the gamut’s variation as a function of z.

Our method identifies the correct solution manifold, but the Pareto

fronts from lower-performing contexts within each cell appear “dom-

inated,” so they are left out. The ZDT6 lower envelope discrepancy is

because the solution density shrinks exponentially near the context-

free front; thus, the fixed-context front at our smallest cell center

(𝑧 = 0.0025) is still far from the ground truth. This is resolved by

generating buffer samples along the exact context boundary (𝑧 = 0).

Fourier Benchmark. The ZDT functions are helpful for validation

against an established benchmark. However, the solution P is a

single linear manifold in all 5 cases. We stress test our algorithm

with a contextual Fourier benchmark, for which P is non-linear and

disconnected (Fig. 8). Each objective function 𝑓𝑖 (x, z) is

𝑓𝑖 (x, z) =
𝐷∑
𝑖=1

𝑁∑
𝑗=1

[
𝛼𝑖 𝑗 cos(3 𝑗𝑥𝑖+𝛽2𝑧1𝑖 𝑗

)
]
+
𝐶∑
𝑚=1

𝑁∑
𝑛=1

[
𝛾𝑚𝑛 cos(3𝑛𝑧𝑘+𝜇2𝑧1𝑚𝑛)

]
,
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Fig. 8. Fourier benchmark solution. (Left) Our discovered Pareto gamut
(bottom) and its pre-image (top), colored by context value. (Right) Error
between our gamut/pre-image and 100 precomputed fixed-context solutions.
Strong agreement highlights our algorithm’s empirical convergence, even
in the case of a highly disconnected, non-linear pre-image P ⊆ X.

where 𝑁 is the desired polynomial order, and 𝛼𝑖 𝑗 , 𝛾𝑚𝑛 ∈ [0, 1] and
𝛽𝑖 𝑗 , 𝜇𝑚𝑛 ∈ [0, 𝜋] are randomly chosen coefficients.

6.2 Engineering Design Examples
We now present several engineering examples to demonstrate the

unique practical benefits of the Pareto gamut.

Turbine. Fig. 1 illustrates a simple wind turbine with𝐷 = 3 design

variables: radius 𝑟 (central shaft to blade tip), heightℎ (perpendicular

to plane of rotation), and blade pitch angle 𝛼 . The𝑑 = 2 performance
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Fig. 9. (Left) After computing the Pareto gamut (gray) for turbines over
multiple wind speeds, engineers are able to visualize the performance of
a particular design (colored line) relative to the achievable optimal per-
formance in any context. (Right) Numerical performance curves for each
individual design over the context space, providing additional insight about
each design’s desirability over the context range.

metrics are mass and power output, 𝑃 = 1

2
𝐶𝑝𝜌𝜋𝑟

2𝑣3, where 𝜌 is air

density and 𝑣 is wind speed. The coefficient of performance 𝐶𝑝 is

an empirically measured function of the turbine’s geometry and

environment, which we approximate using data from Johnson [2006,

Fig. 9]. We use 𝑣 as our context parameter (𝐶 = 1).

The optimal turbine designs are highly dependent on 𝑣 (see Fig.

1): small radii are preferable at low wind speeds, but the ceiling on

useful radius values increases alongwith 𝑣 . Of course, 𝑣 is dynamic in

practice, so final designs must perform well under several contexts.

As shown in Fig. 9, the Pareto gamut can highlight designs that are

particularly strong (or weak) in various contexts. For a query design

𝑞 ∈ R𝐷 , we compute 𝐹z∗ (𝑞) ∀z∗ ∈ Z, and plot these values relative

to the Pareto gamut for qualitative inspection. We also quantify the

performance “sacrifice” that 𝑞 incurs at each context, by finding

the closest point 𝑞∗ ∈ 𝐹z∗ (Pz∗ ) and computing the hypervolume

ratio hv(𝐹z∗ (𝑞))/hv(𝑞∗). This gives a proxy for 𝑞’s performance as

a percentage of the achievable optima in each context.

This data allows for more informed design choices. For example,

the blue designs in Fig. 9 may be most suitable for sites with wide

variation in wind speeds, as they are Pareto-optimal under every

context. However, the green design befits areas with reliably high

wind, as it offers superior power output and perfect optimality at

high speeds, plus near-optimality across plausible medium speeds.

Although this discussion of characteristic wind speeds seems

reminiscent of the “representative context” approach from §1, the

Pareto gamut provides considerably more information. For exam-

ple, consider a site with wind 𝑣 ∈ [4.4, 5.2]m/s (normalized value

𝑧 = [0.2, 0.6]). Computing the Pareto front for the average context

𝑧 = 0.4 then selecting the design with maximal power yields the pur-

ple solution in Fig. 9. This solution is optimal at the average context,

but its performance relative to the achievable optima falls off dramat-

ically to either side. Thus, the turbine may perform sub-optimally a

large majority of the time. This sensitivity is only well-exposed by

the Pareto gamut, which emphasizes its ability to provide unique

insights that were not readily observable with existing methods.

Bicycle Rocker and Seat Stay. As discussed in §1.1, context plays

a critical role for hierarchically-designed assemblies such as a full-

suspension bicycle (Fig. 2, 10), because high-level assembly decisions

(contexts) affect the optimal designs and achievable performance of

each individual part comprising the assembly. For example, consider

shifting the shared pivot in Fig. 10 upward: this expands the convex

hull of the both adjacent parts, altering their achievable trade-offs.

However, the higher pivot also produces drastically different sus-

pension characteristics, as shown by the anti-squat curves [Faulkner

2014; Roberts 2020]. Experts agree that “the very first thing that

needs to be done is a proper layout of the suspension kinematics

to ride properly, then visual and manufacturing concerns come in

after” [Benedict 2018]. However, engineers care about the perfor-

mance of the assembly and the individual components, so they must

revise the assembly decisions until they admit sufficiently perfor-

mant components as well. This can lead to long iteration cycles with

existing tools, because engineers cannot easily access information

about the final parts during the layout phase, as every pivot location

would require an independent optimization of the adjacent parts.

Our method naturally facilitates this multi-level exploration, by

treating each assembly-level decision as context that is shared by

its adjacent components, then computing the Pareto gamut for each

part independently. For proof of concept, we consider two pieces

of the suspension linkage: the rocker and the seat stay (Fig. 10).

Each component has 𝐷 = 3 design variables, 𝑑 = 2 performance

metrics (approximate compliance and mass), and 𝐶 = 1 context

(shared pivot point). We discover the Pareto gamut for each part

independently. Then, as the shared pivot location is adjusted, we can

provide instant access to the appropriate fixed-context Pareto front

for each affected part. By exposing the downstream implications

of each assembly-level choice in conjunction with the high-level

metrics like anti-squat, the Pareto gamut could permit intuitive,

holistic assembly design at a fraction of the traditional overhead.

Alternatively, one might circumvent hierarchical design issues by

optimizing over the entire assembly at once, with additional design

variables for the pivot locations to be optimized w.r.t. metrics like

anti-squat. This global approach has two critical drawbacks. Even in

the simple rocker-stay case, the combined problem requires 𝑑 ≥ 5

metrics (1 for anti-squat plus 2 each from the stay/rocker), which is

considered intractable for a priori optimization methods [Schütze

et al. 2019]. Engineers could omit or scalarize some objectives to

improve tractability, but this tuning process is tedious and biases

the results. More importantly, suspension behaviors like anti-squat

are highly subjective: experts agree that “there is no set equation

for the right amount of anti-squat. All riders have different riding

styles. So, some may prefer more anti squat where others prefer less.

[...] Different terrain benefits from different designs, too” [Benedict

2018]. Thus, it does not make sense to optimize the anti-squat or,

by extension, the pivot positions; they must be explored for each

unique scenario.

The Pareto gamut addresses both of these drawbacks by decom-

posing the complex design problem into intuitive sub-assemblies

linked by adjustable constraints (contexts). Since each component

is self-contained (as in the traditional hierarchical approach), its

optimization is tractable and comprehensive, as there is no need

to omit or scalarize metrics of interest. Moreover, by optimizing

the component for every assembly-level context, the Pareto gamut

could permit rapid customization of bicycles with high performance

at both the component and assembly levels.
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Fig. 10. (Left) Pareto gamuts for two parts of a bicycle suspension, over a shared context indicating the vertical position of their mutual pivot point (Right,
green boxes). Engineers explore many pivot positions to adjust high-level assembly characteristics like anti-squat (R,Top). The part-wise Pareto gamuts offer
direct access to the optimized designs for each pivot choice (R,Bottom), which provides additional insight about the impact of each assembly-level decision.

Solar Roofing. Context parameters are helpful for solar roof design

(Fig. 11), where architects must balance quantifiable metrics like

solar output against subjective metrics like the house aesthetics and

its location on a land plot. House location also affects the roof’s

power output, which depends on e.g. the relative position of the

sun and any occluders, like trees. We optimize our roof for 𝑑 = 2

performancemetrics (power output in the morning and the evening),

over a context (𝐶 = 1) that indicates the building’s global orientation.

Our design space is a height field of size 𝐷 = 100. We encourage

smooth roofs by adding a regularizer to each performance metric.

As shown in Fig. 11, all orientations exhibit similar performance

tradeoffs, so none have a quantifiable advantage. However, the

Pareto-optimal design that yields a given performance in each con-

text varies dramatically, which affects the aesthetic goals. By effi-

ciently exposing the functionally-optimal designs for all contexts,

our Pareto gamut could allow architects to focus on more aesthetic

implications that are difficult to quantify. For example, on a property

with trees along the east (which occlude morning sun), architects

could peruse the evening-focused designs across many orientations

to find one that satisfies their aesthetic goals. This generality also

means that the same Pareto gamut can be used in many distinct

situations, without needing to design and optimize a new model

for each environment. In particular, the Pareto gamut discussed

above could also be used to plan for a lot with trees to the west, by

exploring the morning-efficient designs over several contexts.

This example also confirms our algorithm’s ability to navigate

large design spaces. Although we defer our extended performance

comparisons to §6.3, we highlight that for 𝐷 = 100 our approach

achieves comparable solution quality with at least 200× fewer func-

tion evaluations and 45× shorter runtime than other state-of-the-art

multi-objective optimization approaches. We tested this problem

with up to 𝐷 = 400 variables, and found similar performance trends

in all cases. Thus, the Pareto gamut is ideal for problems with large

design spaces and few metrics/contexts, as its complexity depends

primarily on 𝑑 and 𝐶 . Our discovery and visualization are (largely)

agnostic to 𝐷 , excepting the fact that our implementation uses ex-

plicit Jacobian and Hessian matrices. The latter grows quadratically

in 𝐷 , so for 𝐷 > 200 the memory requirements exceed our avail-

able RAM and force us to read from disk, increasing the runtime.

To alleviate this, we could adapt recent continuation schemes for

Pareto front discovery that permit millions of design variables [Ma

et al. 2020]. However, even without this improvement, our capacity

is large enough to support many engineering problems.

Lamp. The parametric lamp shown in Fig. 12 tests our algorithm

on a higher-dimensional Pareto gamut, with 𝑑 = 3 and 𝐶 = 1. The

lamp has 𝐷 = 21 design variables controlling the length and orienta-

tion of each rod. The performance metrics are mass, instability (𝐿2
distance between the base center and the lamp’s projected center

of mass), and illumination of a pre-determined focal point 𝑝 ∈ R3
(average distance of the lamp’s bulbs to 𝑝). We use the focal point’s

height 𝑝𝑧 as our context, to expose the achievable trade-offs for

many height variations, from desk- to floor-lamp.

As expected, the Pareto set includes increasingly taller lamps

as 𝑝𝑧 increases. Some designs also persist throughout all contexts,

such as the lightweight, stable design shown in Fig. 12. Our method

improves the design consistency across contexts, because we propa-

gate optimal designs to all relevant contexts upon discovery in some
context, rather than discovering them independently on each front.

This example shows that our method scales in 𝑑 at least as well

as fixed-context approaches. Both cases are subject to the curse of

dimensionality, as the potential surface area of each Pareto front

(and thus, the size of the point set required for approximation) grows

exponentially in𝑑 . Fixed-context a posteriorimethods are considered
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Fig. 11. (Center) Pareto gamut for a solar roof, optimized for output at different times of day, over a context that controls the building’s orientation.
(Left/Right) Renderings of the single most extreme point on each end of the highlighted fixed-context fronts. Although the achievable performance of each
morning- or evening-focused solution is roughly equivalent, the design that realizes this performance varies dramatically in different contexts.

Pareto Gamut (4D)

Focal Height: 0.66m (0.16) Focal Height: 1.10m (0.44) Focal Height: 1.98m (0.99)

Fo
ca

l I
llu

m
in

at
io

n

Stability Mass

Focal
Height

Performance Space
Focal Illumination Focal Illumination Focal Illumination

Stability

M
as

s

Stability

M
as

s

Stability

M
as

s

Fig. 12. (Left) 4D Pareto gamut for our lamp. Performance values are plotted spatially, and color indicates the context. (Right) 3D fixed-context Pareto fronts,
embedded in 2D space using barycentric coordinates. High-performing designs w.r.t. each metric are located near the labeled edge. Grayscale value indicates
the lamp heights. As expected, higher focal points yield taller lamps (light gray), but the most lightweight, stable lamps (dark gray) persist through all contexts.

intractable for 𝑑 > 3 [Schütze et al. 2019]. Since the Pareto gamut

has dimension 𝑑 + 𝐶 , it may initially seem that engineers will be

forced to choose between exploring a third performance metric or

exploring a context parameter. Our lamp dismisses this concern

by providing a dense gamut for 𝑑 + 𝐶 = 4, with no algorithmic

modifications and a reasonable computational cost (see §6.3).

Bicopter Controller. To demonstrate our algorithm with multiple

context parameters (𝐶 = 2), we optimize the controller for a 2D bi-

copter with the morphology (bicopter length ℓ and material density

𝜌) as our context (Fig. 13). We optimize for 𝑑 = 2 common perfor-

mance metrics: ability to reach a target, and overall energy usage

[Tedrake 2020]. Our design space has 𝐷 = 32 variables, denoting the

actuation sequence for each of the 2 propellers over 16 time steps.

Fig. 13 demonstrates our successful gamut discovery, even with

many highly-dependent design variables over 10, 000 fixed contexts.

We validate the results intuitively: long, heavy bicopters require

more energy-intensive controllers to reach the goal; thus, the trade-

offs get worse and the hypervolume decreases. The energy-efficient

controllers leave long/heavy bicopters farther from the goal, because

they require a higher baseline energy to overcome gravity and our

experiment does not consider collision with a ground plane.

This experiment also shows the Pareto gamut’s promise for other

exciting domains, including co-optimization of robot geometry and

controls for various tasks. Typically, at least one element is presumed

fixed: e.g., robot morphologies and controllers are optimized for a

particular task/terrain [Ha et al. 2018; Zhao et al. 2020], or controllers

are optimized to fit a specific robot design [Lee et al. 2020; Spielberg

et al. 2017]. By exploring a range of robot morphologies or terrains,

our method could indicate e.g. strong “all-purpose” morphologies

that admit highly-performant controllers under many conditions.
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Fig. 13. Left: 4D Pareto gamut for the 2-context bicopter controller design problem. Center: Hypervolume for each of the 1002 fixed context Pareto fronts on
the gamut. As expected, the hypervolume (i.e., achievable performance) decreases as length or density increase. Bottom Right: Several fixed-context Pareto
fronts extracted from the gamut; force analysis of the bicopter. Top Right: Actuation trajectories for several Pareto-optimal design points. As expected, longer
copters require more energy to reach the same distance-to-goal.

6.3 Performance Benchmarks
We compare our algorithm to two state-of-the-art fixed-context

approaches: the closely-related approach from Schulz et al. [2018]

and a popular evolutionary algorithm, NSGA-II [Deb et al. 2002]. To

“approximate” the gamut with these algorithms, we compute Pareto

fronts at 𝑁 evenly-spaced fixed-context values z ∈ Z. We report the

overall runtime and number of function evaluations for eachmethod,

and provide normalized “per-context” costs for fair comparison on

each metric. Solution quality is measured by the hypervolume of

fixed-context fronts that are either explicitly computed by a fixed-

context method or extracted from our gamut, respectively.

As shown in Table 1 (where 𝑁 = 5), all methods yield consistent

hypervolumes, which validates the quality of fixed-context fronts

extracted from our gamut. Moreover, our method consistently out-

performs the others w.r.t. average time and function evaluations per

context. The one exception (bicopter, # evals) is due to premature

convergence by NSGA, which exhibits notably lower hypervolume.

Our method finds the best hypervolume using half as many samples

as Schulz et al. due to our generalized first-order approximation,

which amortizes the optimization cost over the entire context range.

For further validation, we benchmark the Turbine example us-

ing 𝑁 = 5, 10, . . . , 200 (Fig. 14). To achieve an information density

comparable to our Pareto gamut, both previous works require an

order of magnitude more function evaluations. Moreover, the cost

of fixed-context computation exceeds the cost of our full Pareto

gamut once the user seeks 𝑁 > 10 contexts on average, or 35 in the

worst case. This offers immediate practical relevance, as engineers

already consider this many contexts to ensure robust designs.

To approximate the Pareto gamut and its pre-image, one may

also consider interpolating fixed-context solutions. If the Pareto sets

and fronts vary smoothly w.r.t. z, as in the Turbine, this is plausible.

However, sufficient smoothness in both spaces is not guaranteed:

the performance oscillations for ZDT4 would require many Pareto

fronts to avoid aliasing, and the solar roof’s drastic design changes

would require many sets. This is difficult to gauge a priori, which

casts doubt on results interpolated from small 𝑁 . Thus, our Pareto

gamut offers higher confidence for a comparable, if not lower, cost.

Fig. 14. Comparison on Turbine example. (Left) Function evaluations re-
quired to compute 𝑁 evenly-spaced fixed-context Pareto fronts with prior
work (blue, purple) vs. our Pareto gamut with 𝑁 = 𝑁𝑐 = 200 context cells
(red dot). Each experiment was run 10 times. Solid lines indicate the mean
value, and shaded areas indicate the min/max. The dashed red line empha-
sizes the critical point (𝑁 = 10, evals ≈ 10

5) at which computing the full
Pareto gamut becomes more efficient than repeated fixed-context computa-
tions with either method. (Right) Pareto gamut density achieved by our
method (colored by context value) vs. Schulz et al. [2018] (black curves),
assuming ∼ 10

5 function evaluations. In agreement with the critical point at
left, Schulz et al. [2018] computes 10 fixed-context fronts with this budget.

7 DISCUSSION AND LIMITATIONS
The Pareto gamut offers many new possibilities, but it is not without

its challenges. For example, the performance metric normalization

can be problematic if the context drastically alters the achievable

performance range. For the turbine over a physically common wind

range of 𝑣 ∈ [2, 20]m/s, the achievable power outputs span 6 orders

of magnitude. Since power scales cubically with the context (𝑣), the

Pareto fronts for low wind speeds occupy a small fraction of the

available performance space – and thus, a small fraction of the buffer

cells. This condensed front falsely implies that there are no tradeoffs

at lowwind speeds; in reality, the tradeoffs have been lost within our

discretization. To address this, we limit wind speeds to 𝑣 ∈ [4, 6]m/s

so the discrepancy in achievable values is not detrimentally large. It

would be worthwhile to explore this further, to increase the context
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Table 1. Performance comparison illustrating our method’s amortized advantage (gray columns) over two state-of-the-art fixed-context approaches: Schulz et al.
[2018] and NSGA-II [Deb et al. 2002]. We compare one run of our algorithm (yielding the Pareto gamut) to 5 runs of Schulz/NSGA (each yielding a single fixed-
context front). Our algorithm provides ≥ 40× denser coverage of the context space without sacrificing proportional efficiency/effectiveness, as
evidenced by our gamut’s comparable hypervolume at each fixed-context front, and the superior efficiency wrt function evaluations and time per context. We
use an official Python benchmark [Blank and Deb 2020] for NSGA-II, and a MATLAB implementation for Schulz et al. and Ours. All experiments were run on
an Intel Core i7 CPU. For 𝑑 +𝐶 < 4, reported results are averaged over 10 experimental runs; for 𝑑 +𝐶 = 4, we report 1 representative run.

Turbine (𝑫 = 3, 𝒅 = 2, 𝑪 = 1) BikeRocker (𝑫 = 3, 𝒅 = 2, 𝑪 = 1)
Fixed Context Hypervolume #Function Evals Time (s) Fixed Context Hypervolume #Function Evals Time (s)

z=0.1 z=0.3 z=0.5 z=0.7 z=0.9 Total Per z
†

Total Per z
†

z=0.1 z=0.3 z=0.5 z=0.7 z=0.9 Total Per z
†

Total Per z
†

NSGA 0.18 0.27 0.40 0.58 0.81 61,000 12,200 8.75 1.75 0.77 0.74 0.72 0.69 0.66 63,000 12,600 13.5 2.70

Schulz 0.18 0.27 0.40 0.58 0.81 44,538 8,908 37.9 7.58 0.76 0.74 0.70 0.68 0.66 291,268 58,253 34.4 6.88

Ours 0.16 0.26 0.37 0.68 0.83 124,713 624 52.1 0.26 0.77 0.74 0.71 0.69 0.66 1,877,917 9,390 489.4 2.45
Lamp (𝑫 = 21, 𝒅 = 3, 𝑪 = 1) Solar Roof (𝑫 = 100, 𝒅 = 2, 𝑪 = 1)

Fixed Context Hypervolume #Function Evals Time (s) Fixed Context Hypervolume #Function Evals Time (s)

z=0.1 z=0.3 z=0.5 z=0.7 z=0.9 Total Per z
†

Total Per z
†

z=0.1 z=0.3 z=0.5 z=0.7 z=0.9 Total Per z
†

Total Per z
†

NSGA 0.58 0.58 0.56 0.51 0.44 5,000,000
∗

1,000,000
∗

1,298.1 259.6 0.27 0.25 0.23 0.27 0.25 5,000,000
∗

1,000,000
∗

2,046.2 409.23

Schulz 0.57 0.58 0.58 0.58 0.57 25,744,440 5,148,888 20,160.5 4,032.1 0.30 0.31 0.31 0.31 0.30 1,013,233 202,647 1,427.3 285.5

Ours 0.57 0.60 0.60 0.59 0.56 683,774 3,419 28,305.8 141.5 0.30 0.31 0.31 0.30 0.30 273,632 1,368.2 1,225.9 6.1
Bicopter with Constant Density 𝝆 = 0.5 (𝑫 = 32, 𝒅 = 2, 𝑪 = 1) Bicopter with Density as 2𝑛𝑑 Context (𝑫 = 32, 𝒅 = 2, 𝑪 = 2)

Fixed Context Hypervolume #Function Evals Time (s) FC HV for z = (ℓ, 𝜌) = (ℓ, 0.5) #Function Evals Time (s)

z=0.1 z=0.3 z=0.5 z=0.7 z=0.9 Total Per z
†

Total Per z
† ℓ=0.1 ℓ=0.3 ℓ=0.5 ℓ=0.7 ℓ=0.9 Total Per z

†
Total Per z

†

NSGA 0.89 0.89 0.86 0.87 0.75 43,150 8,630 49.1 9.82 0.89 0.89 0.86 0.87 0.75 43,150 8,630 49.1 9.82

Schulz 0.98 0.97 0.96 0.96 0.95 231,030 46,206 956.5 191.3 0.98 0.97 0.96 0.96 0.95 231,030 46,206 956.5 191.3

Ours 0.99 0.98 0.98 0.97 0.96 5,678,502 28,392 868.5 4.3 0.99 0.99 0.98 0.98 0.97 30,782,146 3,078†† 67,629 6.76††
†
Divide Total by 5 for NSGA-II and Schulz (number of fixed contexts computed); divide by 200 for Ours (number of buffer cells along context dimension).

††
When𝐶 = 2, divide Total by 100

2
(number of buffer cells along context dimensions) for Ours.

∗
NSGA-II is capped at 1,000,000 function evaluations per fixed context.

parameter range while preserving the integrity of each fixed-context

Pareto front and its local change as a function of the context.

The feasible design space may also change in response to the con-

text. For instance, as the angle of an L-bracket shrinks (see Fig. 2),

the maximum material thickness must be reduced. In this paper, we

restrict each design variable to the largest range that is admissible

over all contexts. This assumption is made for simplicity: our theory

permits linear and non-linear constraints on the design variables,

so the user could go beyond box constraints if desired. However,

codifying the permissible range for each context can be challenging.

Future work could improve our pipeline by automatically discover-

ing the feasible design space across varying contexts.

As discussed in §6.2, full Pareto gamut discovery is likely only fea-

sible for low-dimensional augmented performance spaces (𝑑+𝐶 ≤ 4).

To permit 𝑑 +𝐶 > 4, it would be interesting to build an interactive

optimization method for Pareto gamut discovery and traversal. Our

first-order approximation offers a strong foundation for interactive

methods, as it can generate feasible search directions about any

known-optimal point on the fly. Then, a set of optimally-perturbed

samples could be presented to the user for selection. Alternatively,

the user could specify a desired design or context perturbation 𝒖 ∈ X
(e.g. longer blades, lowerwind speed); by projecting𝑢 onto our explo-

ration subspace, we could find perturbations𝑤 ∈ X that satisfy user

guidance while preserving optimality. We could also support user-

guided performance perturbations (e.g. better power) by considering
a similar approach with 𝐷𝐹 · 𝑣 . Schütze et al. [2019] demonstrate

this interactive approach for fixed-context optimization, by build-

ing on the first-order approximation of Martín and Schütze [2018].

Our first-order approximation could be integrated into a similar

framework, to provide novel features such as (1) built-in sensitivity

analysis w.r.t. environment parameters, uncertain measurements,

etc. and (2) an efficient way to find an optimal design x̂ in context ẑ
given a known-optimal solution in some context (x∗, z∗).

Finally, future work could expand on our results to make Pareto

gamut exploration more practical and accessible. Our current ex-

amples are implemented with hand-designed meshes and analytic

performance metrics that are differentiated symbolically using MAT-

LAB. However, our method could easily be extended to more compli-

cated models and metrics by interfacing with recent differentiable

engineering frameworks, such as XCAD [Hafner et al. 2019]. An-

other useful direction would build upon our visualization prototypes

to provide an intuitive user interface for Pareto gamut exploration.

8 CONCLUSION
To discover effective engineering solutions, it is critical to consider

potential designs’ performance w.r.t. multiple metrics and contexts.

Existing optimization schemes only provide insight into one con-

text at a time, causing context exploration to be tedious and time-

consuming. We address this by incorporating variable contexts into

the multi-objective optimization process, by formalizing the notion

of a Pareto gamut and developing an algorithm that discovers the

Pareto gamut directly. Our method yields dense coverage of the

context range, with high-quality fixed-context Pareto fronts and

relatively little additional computational cost. As evidenced by our

examples, the Pareto gamut is well-poised to improve the functional

design process by providing unprecedentedly thorough information

and laying the groundwork for a more holistic design approach.

Thus, our work serves as a critical first step toward comprehensive

design optimization for practical engineering pursuits.
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A PROOF OF FIRST-ORDER APPROXIMATION
Suppose we construct a curve 𝛾 (𝑡) := (x(𝑡), z(𝑡)), constrained to

the Pareto gamut for 𝑡 ∈ (−𝜀, 𝜀) as in Proposition 4.7. At a given

point (x∗, z∗) along the curve, the number of active constraints 𝑔𝑘 is

𝐾 ′ ≤ 𝐾 . Without loss of generality, we can permute the constraints

𝑔𝑘 such that the first 𝐾 ′ ≤ 𝐾 are the active ones. Because our

objectives are continuous, all (in)active constraints remain (in)active

within our (potentially restricted) 𝜀-ball of interest. Thus, inactive

constraints 𝑔𝑘 have no impact on Eqn. 7 (KKT stationarity), because

Eqn. 6 (KKT complementary slackness) ensures that 𝛽𝑘 = 0 for all

relevant 𝜀. We reformulate our KKT conditions from Proposition

3.5, in order to (1) explicitly ignore the inactive constraints (which

have no effect), (2) reflect our parametrization on 𝑡 , and (3) require

that the context z remains within its predefined feasible range:

(x∗, z∗) ∈ X (10)

𝛼𝑖 (𝑡) ≥ 0 ∀𝑖 ∈ {1, . . . , 𝑑}, 𝑡 ∈ (−𝜖, 𝜖) (11)

𝛽𝑘 (𝑡) ≥ 0 ∀𝑘 ∈ {1, . . . , 𝐾 ′}, 𝑡 ∈ (−𝜖, 𝜖) (12)

𝑑∑
𝑖=1

𝛼𝑖 (𝑡) = 1 ∀𝑡 ∈ (−𝜖, 𝜖) (13)

𝛽𝑘 (𝑡)𝑔𝑘 (x(𝑡), z(𝑡)) = 0 ∀𝑘 ∈ {1, . . . , 𝐾 ′}, 𝑡 ∈ (−𝜖, 𝜖) (14)[
𝑑∑
𝑖=1

𝛼𝑖 (𝑡)∇x 𝑓𝑖 (x(𝑡), z(𝑡))
]
+
[
𝐾 ′∑
𝑘=1

𝛽𝑘 (𝑡)∇x𝑔𝑘 (x(𝑡), z(𝑡))
]
= 0

∀𝑡 ∈ (−𝜖, 𝜖) (15)

Denote with ℎ(𝑡) the last line of the modified KKT conditions (Eqn.

15). We recall that at 𝑡 = 0, we have (x(0), z(0)) = (x∗, z∗), which is

Pareto optimal by construction. Thus, there generically exist KKT

dual variables 𝜶 (0) = 𝜶 ∗ and 𝜷 (0) = 𝜷∗ such that ℎ(0) = 0. We

wish to find a first order approximation about 𝑡 = 0 that preserves

this condition locally, i.e. ℎ(𝑡) = 0 for 𝑡 ∈ (−𝜖, 𝜖). Thus, we want to
enforce ℎ′(𝑡) = 0 for 𝑡 ∈ (−𝜖, 𝜖). Differentiating ℎ(𝑡) and evaluating
at 𝑡 = 0 yields the following relation:

0 ≡ ℎ′(0) = 𝐷𝑥𝐹𝑇 (x∗, z∗)𝜶 ′(0) + 𝐷𝑥𝐺𝑇 (x∗, z∗)𝜷 ′(0)

+
[
𝑑∑
𝑖=1

𝛼∗𝑖 𝐻𝑥𝑥 𝑓𝑖 (x
∗, z∗) +

𝐾 ′∑
𝑘=1

𝛽∗
𝑘
𝐻𝑥𝑥𝑔𝑘 (x∗, z∗)

]
x′(0)

+
[
𝑑∑
𝑖=1

𝛼∗𝑖 𝐻𝑥𝑧 𝑓𝑖 (x
∗, z∗) +

𝐾 ′∑
𝑘=1

𝛽∗
𝑘
𝐻𝑥𝑧𝑔𝑘 (x∗, z∗)

]
z′(0)

=: 𝐷𝑥𝐹
𝑇 · 𝜶 ′(0) + 𝐷𝑥𝐺𝑇 · 𝜷 ′(0) + 𝐻𝑥 · x′(0) + 𝐻𝑧 · z′(0) .

We also consider the additional constraints given by Eqn. 13 and Eqn.

14. The former simply requires that

( ∑
𝛼𝑖 = 1

)
=⇒

( ∑
𝛼 ′
𝑖
= 0

)
.

For the latter, we differentiate with respect to 𝑡 , and simplify:

0 ≡ 𝛽 ′
𝑘
(𝑡)𝑔𝑘 (x(𝑡), z(𝑡))

+ 𝛽𝑘 (𝑡)
[
∇x𝑔𝑘 (x(𝑡), z(𝑡))𝑇 · x′(𝑡) + ∇z𝑔𝑘 (x(𝑡), z(𝑡))𝑇 · z′(𝑡)

]
(16)

≡ ∇x𝑔𝑘 (x(𝑡), z(𝑡))𝑇 · x′(𝑡) + ∇z𝑔𝑘 (x(𝑡), z(𝑡))𝑇 · z′(𝑡) (17)

This simplification (from Eqn. 16 to Eqn. 17) follows because all con-

straints 𝑔𝑘 with 𝑘 ∈ {1, . . . , 𝐾 ′} are active for all 𝑡 ∈ (−𝜖, 𝜖). Thus,
𝑔𝑘 (x(𝑡), z(𝑡)) = 0 (causing the first term to vanish), and 𝛽𝑘 (𝑡) ≠ 0.

Stacking expression Eqn. 17 for all 𝐾 ′ constraints 𝑔𝑘 into a single

matrix, and evaluating at 0, we have

0 = [𝐷x𝐺, 𝐷z𝐺] ·
[
x′(0)
z′(0)

]
Combining all of the constraints above, it must be the case that

0 ≡


1 0 0 0
0 0 𝐷x𝐺 𝐷z𝐺

𝐷𝑥𝐹
𝑇 𝐷𝑥𝐺

𝑇 𝐻𝑥 𝐻𝑧

︸                                    ︷︷                                    ︸
∈R(1+𝐾′+𝐷 )×(𝑑+𝐾′+𝐷+𝐶 )


𝜶 ′(0)
𝜷 ′(0)
x′(0)
z′(0)

 (18)

=: 𝑀𝑣 (19)

□
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